Symmetry breaking in twisted double bilayer graphene
Nature Physics, ISSN: 1745-2481, Vol: 17, Issue: 1, Page: 26-30
2021
- 163Citations
- 244Captures
- 7Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Experiments with twisted 2D materials catch electrons behaving collectively
Researchers report that carefully constructed stacks of graphene can exhibit highly correlated electron properties. The team also found evidence that this type of collective behavior likely relates to the emergence of exotic magnetic states.
Most Recent News
Study examines spontaneous symmetry breaking in twisted double bilayer graphene
Over the past few years, a growing number of researchers worldwide has been conducting studies investigating the properties and features of so-called twisted van der Waals (vdW) materials. This unique class of materials could be an ideal platform to examine correlated phases that occur as a result of strong interactions between electrons.
Article Description
The flat bands that appear in some twisted van der Waals heterostructures provide a setting in which strong interactions between electrons lead to a variety of correlated phases. In particular, heterostructures of twisted double bilayer graphene host correlated insulating states that can be tuned by both the twist angle and an external electric field. Here, we report electrical transport measurements of twisted double bilayer graphene with which we examine the fundamental role of spontaneous symmetry breaking in its phase diagram. The metallic states near each of the correlated insulators exhibit abrupt drops in their resistivity as the temperature is lowered, along with associated nonlinear current–voltage characteristics. Despite qualitative similarities to superconductivity, the simultaneous reversals in the sign of the Hall coefficient point instead to spontaneous symmetry breaking as the origin of the abrupt resistivity drops, whereas Joule heating seems to underlie the nonlinear transport. Our results suggest that similar mechanisms are probably relevant across a broader class of semiconducting flat band van der Waals heterostructures.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know