Tumour irradiation in mice with a laser-accelerated proton beam
Nature Physics, ISSN: 1745-2481, Vol: 18, Issue: 3, Page: 316-322
2022
- 101Citations
- 109Captures
- 5Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
A breakthrough in laser plasma accelerators could enhance dose delivery in animal tests
It's been more than three decades since proton therapy first became available to cancer patients in a clinical setting. While this technologically advanced treatment option
Article Description
Recent oncological studies identified beneficial properties of radiation applied at ultrahigh dose rates, several orders of magnitude higher than the clinical standard of the order of Gy min. Sources capable of providing these ultrahigh dose rates are under investigation. Here we show that a stable, compact laser-driven proton source with energies greater than 60 MeV enables radiobiological in vivo studies. We performed a pilot irradiation study on human tumours in a mouse model, showing the concerted preparation of mice and laser accelerator, dose-controlled, tumour-conform irradiation using a laser-driven as well as a clinical reference proton source, and the radiobiological evaluation of irradiated and unirradiated mice for radiation-induced tumour growth delay. The prescribed homogeneous dose of 4 Gy was precisely delivered at the laser-driven source. The results demonstrate a complete laser-driven proton research platform for diverse user-specific small animal models, able to deliver tunable single-shot doses up to around 20 Gy to millimetre-scale volumes on nanosecond timescales, equivalent to around 10 Gy s, spatially homogenized and tailored to the sample. The platform provides a unique infrastructure for translational research with protons at ultrahigh dose rates.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know