Laughlin charge pumping in a quantum anomalous Hall insulator
Nature Physics, ISSN: 1745-2481, Vol: 19, Issue: 3, Page: 333-337
2023
- 11Citations
- 26Captures
- 5Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Unleashing Exotic States of Matter: RIKEN Proves Edges Unnecessary
RIKEN physicists have demonstrated a unique quantum state called the quantum anomalous Hall effect in a disk-like device, proving that edge states aren’t necessary for
Article Description
Adiabatic charge pumping is one of the most salient features of topological phases of matter. Laughlin’s charge pumping in a quantum Hall system is the prototypical example. In analogy, three-dimensional topological insulators have been predicted to support charge pumping through their magnetically gapped surface states. But despite its importance as a direct probe of surface Hall conductivity, charge pumping has not been demonstrated in topological-insulator-based systems. Here we report the observation of charge pumping in a thin-film magnetic heterostructure of topological insulators in a geometry that prohibits edge transport. We find that charge pumping occurs between the inner and outer electrodes in response to alternating magnetic fields when the sample is in the quantum anomalous Hall insulator phase. The amount of pumped charge is accounted for by the surface Hall conductivity of half the quantum conductance for each surface, from a comparison with the axion insulator phase that shows no charge pumping. Because charge pumping is closely related to the theoretically predicted topological magnetoelectric effect, our observation may provide clues to its direct observation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know