Potential enthalpic energy of water in oils exploited to control supramolecular structure
Nature, ISSN: 1476-4687, Vol: 558, Issue: 7708, Page: 100-103
2018
- 120Citations
- 164Captures
- 6Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations120
- Citation Indexes120
- 120
- CrossRef103
- Captures164
- Readers164
- 164
- Mentions6
- News Mentions4
- News4
- References2
- Wikipedia2
Most Recent News
Lone water molecules turn out to be directors of supramolecular chemistry
Scientists in supramolecular chemistry often run into surprising outcomes. A broken seal of a lab cuvette led an American researcher at the Eindhoven University of
Article Description
Water directs the self-assembly of both natural and synthetic molecules to form precise yet dynamic structures. Nevertheless, our molecular understanding of the role of water in such systems is incomplete, which represents a fundamental constraint in the development of supramolecular materials for use in biomaterials, nanoelectronics and catalysis . In particular, despite the widespread use of alkanes as solvents in supramolecular chemistry , the role of water in the formation of aggregates in oils is not clear, probably because water is only sparingly miscible in these solvents - typical alkanes contain less than 0.01 per cent water by weight at room temperature . A notable and unused feature of this water is that it is essentially monomeric . It has been determined previously that the free energy cost of forming a cavity in alkanes that is large enough for a water molecule is only just compensated by its interaction with the interior of the cavity; this cost is therefore too high to accommodate clusters of water. As such, water molecules in alkanes possess potential enthalpic energy in the form of unrealized hydrogen bonds. Here we report that this energy is a thermodynamic driving force for water molecules to interact with co-dissolved hydrogen-bond-based aggregates in oils. By using a combination of spectroscopic, calorimetric, light-scattering and theoretical techniques, we demonstrate that this interaction can be exploited to modulate the structure of one-dimensional supramolecular polymers.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know