Progenitor identification and SARS-CoV-2 infection in human distal lung organoids
Nature, ISSN: 1476-4687, Vol: 588, Issue: 7839, Page: 670-675
2020
- 265Citations
- 464Captures
- 7Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations265
- Citation Indexes260
- 260
- CrossRef53
- Patent Family Citations5
- Patent Families5
- Captures464
- Readers464
- 464
- Mentions7
- News Mentions5
- News5
- Blog Mentions1
- Blog1
- References1
- Wikipedia1
Most Recent Blog
Lung Organoids: A Novel Way to Model COVID Infection
Calvin Kuo, MD, PhD, with Shannon Choi, MD, PhD, a student in the Kuo lab. Courtesy Steve Fisch A year into the pandemic, we’ve all heard the stories. A patient is a little short of breath but appears to have a mild case of COVID-19. The next day, she deteriorates so rapidly that she’s rushed to intensive care, put on a ventilator, and hooked up to a dialysis machine to prevent kidney failure. Her
Most Recent News
A Lost World: New Discoveries Shed Light on Early Eukaryotic Life
Scientists have long been fascinated by the early history of eukaryotes, wanting to understand when and how modern life evolved. Limited fossil data suggests that
Article Description
The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5 basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5 cells in basal organoids revealed a distinct population of ITGA6ITGB4 mitotic cells, whose offspring further segregated into a TNFRSF12A subfraction that comprised about ten per cent of KRT5 basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know