Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators
Scientific Reports, ISSN: 2045-2322, Vol: 7, Issue: 1, Page: 16186
2017
- 17Citations
- 34Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes17
- 17
- CrossRef11
- Captures34
- Readers34
- 34
Article Description
High-index dielectric structures have recently been studied intensively for Mie resonances at optical frequencies. These dielectric structures can enable extreme light manipulation, similar to that which has been achieved with plasmonic nanostructures. In the microwave region, dielectric resonators and metamaterials can be fabricated directly using 3D printing, which is advantageous for fabricating structurally complicated 3D geometries. It is therefore especially suitable for the fabrication of subwavelength structures. Here we report theoretical investigations on microwave Fano resonances in 3D-printable dielectric materials and structures. In particular, we propose and analyse 3D-printable, hollow, dielectric resonators with relatively low refractive indices, which exhibit sharp Fano resonances. We can control the interaction between bright and dark modes in a coupled dielectric particle pair by adjusting the inner-hole size, and thus we can increase the radiative Q factors further. We also find that Fano resonances in these hollow dielectric resonators are very sensitive to an index change in the surrounding medium, which could be useful for long-distance environmental sensing. New possibilities and opportunities are opening up with the rapid development of 3D-printing technologies. Our findings and the detailed investigations reported here can provide useful guidelines for future photonic devices based on 3D-printable materials and structures.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know