Metal behavior in the extremes of dynamics
Scientific Reports, ISSN: 2045-2322, Vol: 8, Issue: 1, Page: 5162
2018
- 7Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef6
- Captures10
- Readers10
- 10
Article Description
When the rate of loading is faster than the rate at which material absorbs and converts energy to plastic work and damages, then there is an excess of energy that is partly stored in the material's microstructure and the rest of it triggers micro-dynamic excitations. The additional storage necessitates the development of plastic flow constraints and is directly responsible for the observed dynamic strengthening. At extreme conditions, we find that the micro-excitations contribute to the dynamic behavior. The phenomena are universally observed in metals, frictional materials and polymers. In essence, strong dynamics creates conditions at which materials are pushed from equilibrium and temporarily reside in an excited state of behavior. This study is focused on the behavior of metals. The concept is incorporated into a mechanisms-based constitutive model and is examined for annealed OFHC copper.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know