Effects of sampling effort on biodiversity patterns estimated from environmental DNA metabarcoding surveys
Scientific Reports, ISSN: 2045-2322, Vol: 8, Issue: 1, Page: 8843
2018
- 101Citations
- 325Captures
- 8Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations101
- Citation Indexes100
- 100
- CrossRef75
- Policy Citations1
- Policy Citation1
- Captures325
- Readers325
- 325
- Mentions8
- News Mentions6
- News6
- Blog Mentions2
- Blog2
Most Recent Blog
Arctic Ocean: climate change is flooding the remote north with light – and new species
Authors: Jørgen Berge, Vice Dean for Research, Arctic and Marine Biology, University of Tromsø; Carlos Duarte, Adjunct Professor of Marine Ecology, King Abdullah University of Science and Technology; Dorte Krause-Jensen, Professor, Marine Ecology, Aarhus University; Karen Filbee-Dexter, Research Fellow in Marine Ecology, Université Laval; Kimberly Howland, Research Scientist/Adjunct University Pro
Most Recent News
Arctic ocean: Climate change is flooding the remote north with light — and new species
A boat navigates at night next to large icebergs in eastern Greenland. (AP Photo/Felipe Dana) Jørgen Berge , University of Tromsø ; Carlos Duarte ,
Article Description
Environmental DNA (eDNA) metabarcoding can greatly enhance our understanding of global biodiversity and our ability to detect rare or cryptic species. However, sampling effort must be considered when interpreting results from these surveys. We explored how sampling effort influenced biodiversity patterns and nonindigenous species (NIS) detection in an eDNA metabarcoding survey of four commercial ports. Overall, we captured sequences from 18 metazoan phyla with minimal differences in taxonomic coverage between 18 S and COI primer sets. While community dissimilarity patterns were consistent across primers and sampling effort, richness patterns were not, suggesting that richness estimates are extremely sensitive to primer choice and sampling effort. The survey detected 64 potential NIS, with COI identifying more known NIS from port checklists but 18 S identifying more operational taxonomic units shared between three or more ports that represent un-recorded potential NIS. Overall, we conclude that eDNA metabarcoding surveys can reveal global similarity patterns among ports across a broad array of taxa and can also detect potential NIS in these key habitats. However, richness estimates and species assignments require caution. Based on results of this study, we make several recommendations for port eDNA sampling design and suggest several areas for future research.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know