Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes
Scientific Reports, ISSN: 2045-2322, Vol: 9, Issue: 1, Page: 2690
2019
- 91Citations
- 70Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations91
- Citation Indexes91
- 91
- CrossRef39
- Captures70
- Readers70
- 70
Article Description
Quercetin and its metabolite isorhamnetin elicit various beneficial effects on human health. However, their bioavailability is low. In this study, we investigated whether low concentrations in the physiological range could promote glucose uptake in L6 myotubes, as well as the underlying molecular mechanisms. We found that 0.1 nM and 1 nM quercetin or 1 nM isorhamnetin significantly increased glucose uptake via translocation of glucose transporter type 4 (GLUT4) to the plasma membrane of L6 myotubes. Quercetin principally activated the CaMKKβ/AMPK signalling pathway at these concentrations, but also activated IRS1/PI3K/Akt signalling at 10 nM. In contrast, 1 nM and 10 nM isorhamnetin principally activated the JAK/STAT pathway. Treatment with siAMPKα and siJAK2 abolished quercetin- and isorhamnetin-induced GLUT4 translocation, respectively. However, treatment with siJAK3 did not affect isorhamnetin-induced GLUT4 translocation, indicating that isorhamnetin induced GLUT4 translocation mainly through JAK2, but not JAK3, signalling. Thus, quercetin preferably activated the AMPK pathway and, accordingly, stimulated IRS1/PI3K/Akt signalling, while isorhamnetin activated the JAK2/STAT pathway. Furthermore, after oral administration of quercetin glycoside at 10 and 100 mg/kg body weight significantly induced GLUT4 translocation to the plasma membrane of skeletal muscles in mice. In the same animals, plasma concentrations of quercetin aglycone form were 4.95 and 6.80 nM, respectively. In conclusion, at low-concentration ranges, quercetin and isorhamnetin promote glucose uptake by increasing GLUT4 translocation via different signalling pathways in skeletal muscle cells; thus, these compounds may possess beneficial functions for maintaining glucose homeostasis by preventing hyperglycaemia at physiological concentrations.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know