Post-transcriptional regulatory patterns revealed by protein-RNA interactions
Scientific Reports, ISSN: 2045-2322, Vol: 9, Issue: 1, Page: 4302
2019
- 20Citations
- 50Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations20
- Citation Indexes20
- CrossRef20
- 20
- Captures50
- Readers50
- 50
- Mentions1
- News Mentions1
- News1
Article Description
The coordination of the synthesis of functionally-related proteins can be achieved at the post-transcriptional level by the action of common regulatory molecules, such as RNA–binding proteins (RBPs). Despite advances in the genome-wide identification of RBPs and their binding transcripts, the protein–RNA interaction space is still largely unexplored, thus hindering a broader understanding of the extent of the post-transcriptional regulation of related coding RNAs. Here, we propose a computational approach that combines protein–mRNA interaction networks and statistical analyses to provide an inferred regulatory landscape for more than 800 human RBPs and identify the cellular processes that can be regulated at the post-transcriptional level. We show that 10% of the tested sets of functionally-related mRNAs can be post-transcriptionally regulated. Moreover, we propose a classification of (i) the RBPs and (ii) the functionally-related mRNAs, based on their distinct behaviors in the functional landscape, hinting towards mechanistic regulatory hypotheses. In addition, we demonstrate the usefulness of the inferred functional landscape to investigate the cellular role of both well-characterized and novel RBPs in the context of human diseases.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know