AlN/InAlN thin-film transistors fabricated on glass substrates at room temperature
Scientific Reports, ISSN: 2045-2322, Vol: 9, Issue: 1, Page: 6254
2019
- 4Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, InAlN was grown on glass substrates using pulsed sputtering deposition (PSD) at room temperature (RT) and was applied to thin-film transistors (TFTs). The surface flatness of the InAIN films was improved by reducing the growth temperature from 350 °C to RT. Further, the electron mobility and concentration of the InAlN film that was grown at RT were observed to be strongly dependent on the In composition. It was also observed that the electron concentration could be reduced during the introduction of Al atoms into InN, which could most likely be attributed to the reduction in the position of the Fermi level stabilization energy with respect to the conduction band edge. Further, InAlN-TFT was fabricated, and successful operation with a field-effect mobility of 8 cm V s was confirmed. This was the first demonstration of the operation of TFTs based on the growth of InAlN on an amorphous substrate at RT.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know