MS-based proteomic analysis of cardiac response to hypoxia in the goldfish (Carassius auratus)
Scientific Reports, ISSN: 2045-2322, Vol: 9, Issue: 1, Page: 18953
2019
- 32Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations32
- Citation Indexes32
- 32
- CrossRef26
- Captures15
- Readers15
- 15
Article Description
The exceptional hypoxia tolerance of the goldfish heart may be achieved through the activation of an alternative mechanism recruiting the first product of the anaerobic glycolysis (i.e. piruvate). This hypothesis led to design a classical mass spectrometry based proteomic study to identify in the goldfish cardiac proteins that may be associated with maintaining heart function under normoxia and hypoxia. A selective protein solubilization, SDS PAGE, trypsin digestion and MALDI MS/MS analysis allowed the identification of the 12 most stable hypoxia-regulated proteins. Among these proteins, five are enzymes catalyzing reversible steps of the glycolysis/gluconeogenesis network. Protein composition reveals the presence of fructose-1,6-bisphosphate aldolase B as a specific hypoxia-regulated protein. This work indicated that the key enzyme of reversible steps of the glycolysis/gluconeogenesis network is fructose-1,6-bisphosphate, aldolase B, suggesting a role of gluconeogenesis in the mechanisms involved in the goldfish heart response to hypoxia.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know