Treatment of Coral Wounds by Combining an Antiseptic Bilayer Film and an Injectable Antioxidant Biopolymer
Scientific Reports, ISSN: 2045-2322, Vol: 10, Issue: 1, Page: 988
2020
- 21Citations
- 74Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes20
- 20
- CrossRef14
- Patent Family Citations1
- Patent Families1
- Captures74
- Readers74
- 74
- Mentions1
- News Mentions1
- News1
Most Recent News
Italialaistutkijat kehittivät koralleja parantavan laastarin – "Kyseessä on täysin uusi parannuskeino"
Italian Genovassa sijaitsevan L’Istituto Italiano di Tecnologian ja Milano-Bicoccan yliopiston tutkijat ovat kehittäneet laastarin, jolla voidaan parantaa pieniä ja keskisuuria vaurioituneita koralleja. Laastareita testattiin ensin laboratorio-olosuhteissa ja sen jälkeen neljän kuukauden ajan vesialueella Acropora muricata -lajin koralleihin Malediivien saariryhmän lähellä. Tutkimustulokset julkai
Article Description
Coral reefs are vital for the marine ecosystem and their potential disappearance can have unequivocal consequences on our environment. Aside from pollution-related threats (changes in water temperature, plastics, and acidity), corals can be injured by diseases, predators, humans and other invasive species. Diseases play an important role in this decline, but so far very few mitigation strategies have been proposed and developed to control this threat. In this work, we demonstrate that recently developed bi-layer human skin wound treatment patches containing antiseptics and natural antioxidants with controlled-release capacity can be adapted to treat scleractinian coral wounds effectively. A hydrophilic bilayer film based on polyvinylpyrrolidone (PVP) and hyaluronic acid was used to cover the open wounds while delivering the antiseptics for rapid action. Afterwards, the hydrophilic bi-layer covered wound was sealed with an antioxidant and hydrophobic ε-caprolactone-p-coumaric acid copolymer by melt injection at low temperatures. Treated coral injuries were monitored both in aquaria system and in natural environment in Maldives for over 4 months to reduce the number of entry points for organisms that could lead to diseases. The corals well-tolerated both biomaterials as well as the antiseptics incorporated in these materials. The treatments displayed self-adhering properties, tuneable dissolution time, and biocompatibility and stimulated regeneration properties within the coral wound. As such, this work demonstrates that certain human skin wound treatment materials can be successfully adapted to the curing of coral wounds and delivery of specific drugs to slow down, reduce or even stop the spread of diseases in scleractinian corals as well as in all other benthic organisms affected by uncontrolled pathologies.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know