Influence of quartz powder and silica fume on the performance of Portland cement
Scientific Reports, ISSN: 2045-2322, Vol: 10, Issue: 1, Page: 21461
2020
- 62Citations
- 140Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations62
- Citation Indexes61
- 61
- CrossRef18
- Patent Family Citations1
- Patent Families1
- Captures140
- Readers140
- 140
Article Description
Supplementary cementitious materials interact chemically and physically with cement, influencing the formation of hydrate compounds. Many authors have analyzed the filler and pozzolanic effect. However, few studies have explored the influence of these effects on hydration, properties in the fresh and hardened states, and durability parameters of cementitious composites separately. This study investigates the influence of the replacement of 20% of Portland cement for silica fume (SF) or a 20-µm medium diameter quartz powder (QP) on the properties of cementitious composites from the first hours of hydration to a few months of curing. The results indicate that SF is pozzolanic and that QP has no pozzolanic activity. The use of SF and QP reduces the released energy at early times to the control paste, indicating that these materials reduce the heat of hydration. The microstructure with fewer pores of SF compounds indicates that the pozzolanic reaction reduced pore size and binding capability, resulting in equivalent mechanical properties, reduced permeability and increased electrical resistance of the composites. SF and QP increase the carbonation depth of the composites. SF and QP composites are efficient in the inhibition of the alkali-aggregate reaction. The results indicate that, unlike the filler effect, the occurrence of pozzolanic reaction strongly influences electrical resistance, reducing the risk of corrosion of the reinforcement inserted in the concrete.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know