Controlling the corrosion and hydrogen gas liberation inside lead-acid battery via PANI/Cu-Pp/CNTs nanocomposite coating
Scientific Reports, ISSN: 2045-2322, Vol: 11, Issue: 1, Page: 9507
2021
- 15Citations
- 29Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef6
- Captures29
- Readers29
- 29
Article Description
The liberation of hydrogen gas and corrosion of negative plate (Pb) inside lead-acid batteries are the most serious threats on the battery performance. The present study focuses on the development of a new nanocomposite coating that preserves the Pb plate properties in an acidic battery electrolyte. This composite composed of polyaniline conductive polymer, Cu-Porphyrin and carbon nanotubes (PANI/Cu-Pp/CNTs). The structure and morphology of PANI/Cu-Pp/CNTs composite are detected using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Based on the H gas evolution measurements and Tafels curves, the coated Pb (PANI/Cu-Pp/CNTs) has a high resistance against the liberation of hydrogen gas and corrosion. Electrochemical impedance spectroscopy (EIS) results confirm the suppression of the H gas evolution by using coated Pb (PANI/Cu-Pp/CNTs). The coated Pb (PANI/Cu-Pp/CNTs) increases the cycle performance of lead-acid battery compared to the Pb electrode with no composite.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know