Aluminum particles generated during millisecond electric pulse application enhance adenovirus-mediated gene transfer in L929 cells
Scientific Reports, ISSN: 2045-2322, Vol: 11, Issue: 1, Page: 17725
2021
- 2Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- Captures2
- Readers2
Article Description
Gene electrotransfer is an attractive method of non-viral gene delivery. However, the mechanism of DNA penetration across the plasma membrane is widely discussed. To explore this process for even larger structures, like viruses, we applied various combinations of short/long and high/low-amplitude electric pulses to L929 cells, mixed with a human adenovirus vector expressing GFP. We observed a transgene expression increase, both in the number of GFP-converted cells and GFP levels, when we added a low-voltage/millisecond-pulse treatment to the adenovirus/cell mixture. This increase, reflecting enhanced virus penetration, was proportional to the applied electric field amplitude and pulse number, but was not associated with membrane permeabilization, nor to direct cell modifications. We demonstrated that this effect is mainly due to adenovirus particle interactions with aggregated aluminum particles released from energized electrodes. Indeed, after centrifugation of the pulsed viral suspension and later on addition to cells, the activity was found mainly associated with the aluminum aggregates concentrated in the lower fraction and was proportional to generated quantities. Overall, this work focused on the use of electrotransfer to facilitate the adenovirus entry into cell, demonstrating that modifications of the penetrating agent can be more important than modifications of the target cell for transfer efficacy.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know