Molecular dynamics investigation of charging process in polyelectrolyte-based supercapacitors
Scientific Reports, ISSN: 2045-2322, Vol: 12, Issue: 1, Page: 1098
2022
- 10Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- Captures20
- Readers20
- 20
Article Description
Supercapacitors are one of the technologically impressive types of energy storage devices that are supposed to fill the gap between chemical batteries and dielectric capacitors in terms of power and energy density. Many kinds of materials have been investigated to be used as supercapacitors’ electrolytes to overcome the known limitations of them. The properties of polymer-based electrolytes show a promising way to defeat some of these limitations. In this paper, a simplified model of polymer-based electrolytes between two electrodes is numerically investigated using the Molecular Dynamics simulation. The simulations are conducted for three different Bjerrum lengths and a typical range of applied voltages. The results showed a higher differential capacitance compared to the cases using ionic-liquid electrolytes. Our investigations indicate a rich domain in molecular behaviors of polymer-based electrolytes that should be considered in future supercapacitors.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know