Quantification of salt stress in wheat leaves by Raman spectroscopy and machine learning
Scientific Reports, ISSN: 2045-2322, Vol: 12, Issue: 1, Page: 7197
2022
- 6Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- Captures28
- Readers28
- 28
Article Description
The salinity level of the growing medium has diverse effects on the development of plants, including both physical and biochemical changes. To determine the salt stress level of a plant endures, one can measure these structural and chemical changes. Raman spectroscopy and biochemical analysis are some of the most common techniques in the literature. Here, we present a combination of machine learning and Raman spectroscopy with which we can both find out the biochemical change that occurs while the medium salt concentration changes and predict the level of salt stress a wheat sample experiences accurately using our trained regression models. In addition, by applying different machine learning algorithms, we compare the level of success for different algorithms and determine the best method to use in this application. Production units can take actions based on the quantitative information they get from the trained machine learning models related to salt stress, which can potentially increase efficiency and avoid the loss of crops.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know