Frequency stabilization of multiple lasers to a reference atomic transition of Rb
Scientific Reports, ISSN: 2045-2322, Vol: 12, Issue: 1, Page: 20624
2022
- 6Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Modern atomic clocks based on the interrogation of an atomic transitions in the optical regions require multiple lasers at different wavelength for producing atomic ions, trapping and laser cooling of neutral atoms or atomic ions. In order to achieve highest efficiency for laser cooling or any other atomic transition, frequencies of each of the lasers involved need to be stabilized by mitigating its drifts or fluctuations arise due to ambient temperature variation or other kind of perturbations. The present article describes simultaneous frequency stabilization of multiple number of lasers, required for production and laser cooling of ytterbium (Yb) ions, to a reference transition frequency of rubidium (Rb) atoms. In this technique, a diode laser operating at ~ 780 nm is frequency stabilized to one of the Doppler broadening-free absorption peak of rubidium atoms (Rb) and then used as a reference frequency for calibrating a wavelength meter and subsequent simultaneous frequency stabilization of four lasers operating at different wavelengths.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know