Mir-183 functions as an oncogene via decreasing PTEN in breast cancer cells
Scientific Reports, ISSN: 2045-2322, Vol: 13, Issue: 1, Page: 8086
2023
- 10Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- Captures15
- Readers15
- 15
Article Description
Regarding the important role of microRNAs in breast cancer, investigating the molecular mechanisms of miRs and their impacts on breast cancer progression is critical. Thus, the present work aimed to investigate the molecular mechanism of miR-183 in breast cancer. PTEN was validated by dual luciferase assay as a target gene of miR-183. Through qRT-PCR analysis, miR-183 and PTEN mRNA levels in breast cancer cell lines were measured. To determine the impacts of miR-183 on cell viability, the MTT assay was used. Moreover, flowcytometry was applied to analyze the effects of miR-183 on the cell cycle progression. To detect the effects of miR-183 on the migration of BC cell lines, wound healing was used along with a Trans-well migration assay. Western blot was utilized to assess the effect of miR-183 on PTEN protein expression. MiR-183 can exert an oncogenic effect by promoting cell viability, migration, and cell cycle progression. It was revealed that cellular oncogenicity is positively regulated by miR-183 by inhibiting the expression of PTEN. According to the present data, miR-183 may play a vital role in the progression of breast cancer by reducing PTEN expression. It may be also a potential therapeutic target for this disease.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know