Constant false alarm rate detection of pipeline leakage based on acoustic sensors
Scientific Reports, ISSN: 2045-2322, Vol: 13, Issue: 1, Page: 14149
2023
- 3Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
During the transportation of oil and gas pipelines, there are many potential factors that can lead to pipeline leakage with serious consequences, making automatic and real-time pipeline leakage detection urgent. In response to the inconvenience of manual detection, constant false alarm rate (CFAR) detection technique in radar target detection theory is introduced for pipeline leakage detection based on acoustic signals. In this paper, an automatic pipeline leakage detection algorithm based on an improved CFAR detector is proposed. The improved CFAR detection is executed after pre-processing the acoustic signals so as to adaptively set the detection threshold to achieve the purpose of automatic detection of pipeline leakage incidents. A simulated leakage test of a real pipeline is used for validation, and the proposed method achieves detection accuracies of 84.6%, 97.7%, and 98% for different leakage diameter settings, i.e., 5 mm, 7 mm, and 10 mm leak hole diameters, respectively, with an overall accuracy of 94.1%, while the false alarm rates are 3.3%, 0.7%, and 0, respectively, as well as an overall of 1.2%. The results of experimental data based on real scenarios demonstrate the effectiveness of the proposed method.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know