Bacteriophages with depolymerase activity in the control of antibiotic resistant Klebsiella pneumoniae biofilms
Scientific Reports, ISSN: 2045-2322, Vol: 13, Issue: 1, Page: 15188
2023
- 17Citations
- 35Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Bacteriophage cocktail can effectively disrupt Klebsiella pneumoniae biofilms on medical equipment
Researchers investigated whether a cocktail of bacteriophages coding for the depolymerase polysaccharide could effectively disrupt Klebsiella pneumoniae biofilms.
Article Description
Klebsiella pneumoniae is associated with a variety of infections, such as pneumonia, urogenital infection, liver abscess, and bloodstream infection. It is especially dangerous for patients in medical facilities, where it can cause ventilator-associated pneumonia or intensive care unit-acquired pneumonia. The emergence of multidrug-resistant and hypervirulent strains as well as the ability to form biofilms on various medical devices complicates the treatment of such infections and makes the use of antibiotics ineffective. The application of bacteriophages is a promising alternative for combating Klebsiella pneumoniae biofilms. In the present study a cocktail of 3 bacteriophages with depolymerase activity was used to control antibiotic resistant Klebsiella pneumoniae biofilms in vitro. Biofilms were examined using optical and scanning electron microscopy. The obtained results demonstrate that the studied bacteriophage cocktail can effectively disrupt Klebsiella pneumoniae biofilms.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know