Reducing image artifacts in sparse projection CT using conditional generative adversarial networks
Scientific Reports, ISSN: 2045-2322, Vol: 14, Issue: 1, Page: 3917
2024
- 1Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Reducing the amount of projection data in computed tomography (CT), specifically sparse-view CT, can reduce exposure dose; however, image artifacts can occur. We quantitatively evaluated the effects of conditional generative adversarial networks (CGAN) on image quality restoration for sparse-view CT using simulated sparse projection images and compared them with autoencoder (AE) and U-Net models. The AE, U-Net, and CGAN models were trained using pairs of artifacts and original images; 90% of patient cases were used for training and the remaining for evaluation. Restoration of CT values was evaluated using mean error (ME) and mean absolute error (MAE). The image quality was evaluated using structural image similarity (SSIM) and peak signal-to-noise ratio (PSNR). Image quality improved in all sparse projection data; however, slight deformation in tumor and spine regions was observed, with a dispersed projection of over 5°. Some hallucination regions were observed in the CGAN results. Image resolution decreased, and blurring occurred in AE and U-Net; therefore, large deviations in ME and MAE were observed in lung and air regions, and the SSIM and PSNR results were degraded. The CGAN model achieved accurate CT value restoration and improved SSIM and PSNR compared to AE and U-Net models.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know