PlumX Metrics
Embed PlumX Metrics

In vitro hemodynamic performance of a blood pump for self-powered venous assist in univentricular hearts

Scientific Reports, ISSN: 2045-2322, Vol: 14, Issue: 1, Page: 6941
2024
  • 1
    Citations
  • 0
    Usage
  • 8
    Captures
  • 1
    Mentions
  • 16
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    1
  • Captures
    8
  • Mentions
    1
    • News Mentions
      1
      • 1
  • Social Media
    16
    • Shares, Likes & Comments
      16
      • Facebook
        16

Most Recent News

Data on Cardiology Published by Researchers at University of Stavanger (In vitro hemodynamic performance of a blood pump for self-powered venous assist in univentricular hearts)

2024 APR 10 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Medical Devices Daily -- Investigators publish new report on cardiology. According to

Article Description

Univentricular heart anomalies represent a group of severe congenital heart defects necessitating early surgical intervention in infancy. The Fontan procedure, the final stage of single-ventricle palliation, establishes a serial connection between systemic and pulmonary circulation by channeling venous return to the lungs. The absence of the subpulmonary ventricle in this peculiar circulation progressively eventuates in failure, primarily due to chronic elevation in inferior vena cava (IVC) pressure. This study experimentally validates the effectiveness of an intracorporeally-powered venous ejector pump (VEP) in reducing IVC pressure in Fontan patients. The VEP exploits a fraction of aortic flow to create a jet-venturi effect for the IVC, negating the external power requirement and driveline infections. An invitro Fontan mock-up circulation loop is developed and the impact of VEP design parameters and physiological conditions is assessed using both idealized and patient-specific total cavopulmonary connection (TCPC) phantoms. The VEP performance in reducing IVC pressure exhibited an inverse relationship with the cardiac output and extra-cardiac conduit (ECC) size and a proportional relationship with the transpulmonary pressure gradient (TPG) and mean arterial pressure (MAP). The ideal VEP with fail-safe features provided an IVC pressure drop of 1.82 ± 0.49, 2.45 ± 0.54, and 3.12 ± 0.43 mm Hg for TPG values of 6, 8, and 10 mm Hg, respectively, averaged over all ECC sizes and cardiac outputs. Furthermore, the arterial oxygen saturation was consistently maintained above 85% during full-assist mode. These results emphasize the potential utility of the VEP to mitigate elevated venous pressure in Fontan patients.

Bibliographic Details

Rasooli, Reza; Holmstrom, Henrik; Giljarhus, Knut Erik Teigen; Jolma, Ingunn Westvik; Vinningland, Jan Ludvig; de Lange, Charlotte; Brun, Henrik; Hiorth, Aksel

Springer Science and Business Media LLC

Multidisciplinary

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know