A robust optimization model for multi-objective blood supply chain network considering scenario analysis under uncertainty: a multi-objective approach
Scientific Reports, ISSN: 2045-2322, Vol: 14, Issue: 1, Page: 9452
2024
- 4Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Annually, different regions of the world are affected by natural disasters such as floods and earthquakes, resulting in significant loss of lives and financial resources. These events necessitate rescue operations, including the provision and distribution of relief items like food and clothing. One of the most critical challenges in such crises is meeting the blood requirement, as an efficient and reliable blood supply chain is indispensable. The perishable nature of blood precludes the establishment of a reserve stock, making it essential to minimize shortages through effective approaches and designs. In this study, we develop a mathematical programming model to optimize supply chains in post-crisis scenarios using multiple objectives. Presented model allocates blood to various demand facilities based on their quantity and location, considering potential situations. We employ real data from a case study in Iran and a robust optimization approach to address the issue. The study identifies blood donation centers and medical facilities, as well as the number and locations of new facilities needed. We also conduct scenario analysis to enhance the realism of presented approach. Presented research demonstrates that with proper management, crises of this nature can be handled with minimal expense and deficiency.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know