SCB-YOLOv5: a lightweight intelligent detection model for athletes’ normative movements
Scientific Reports, ISSN: 2045-2322, Vol: 14, Issue: 1, Page: 8624
2024
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Intelligent detection of athlete behavior is beneficial for guiding sports instruction. Existing mature target detection algorithms provide significant support for this task. However, large-scale target detection algorithms often encounter more challenges in practical application scenarios. We propose SCB-YOLOv5, to detect standardized movements of gymnasts. First, the movements of aerobics athletes were captured, labeled using the labelImg software, and utilized to establish the athlete normative behavior dataset, which was then enhanced by the dataset augmentation using Mosaic9. Then, we improved the YOLOv5 by (1) incorporating the structures of ShuffleNet V2 and convolutional block attention module to reconstruct the Backbone, effectively reducing the parameter size while maintaining network feature extraction capability; (2) adding a weighted bidirectional feature pyramid network into the multiscale feature fusion, to acquire precise channel and positional information through the global receptive field of feature maps. Finally, SCB-YOLOv5 was lighter by 56.9% than YOLOv5. The detection precision is 93.7%, with a recall of 99% and mAP value of 94.23%. This represents a 3.53% improvement compared to the original algorithm. Extensive experiments have verified that our method. SCB-YOLOv5 can meet the requirements for on-site athlete action detection. Our code and models are available at https://github.com/qingDu1/SCB-YOLOv5.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know