Shear damage mechanisms of jointed rock mass: a macroscopic and mesoscopic study
Scientific Reports, ISSN: 2045-2322, Vol: 14, Issue: 1, Page: 8619
2024
- 6Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The joints are existing throughout the underground rock mass. It is of great significance to investigate the shear performance of the rock mass to maintain the stability of the underground structure. In this study, we conducted orthogonal tests to determine the proportion of rock-like materials, and used JRC curves to make specimen molds and then prepare the specimens. We conducted straight shear tests and uniaxial compression tests to determine the various mechanical parameters of the rock-like materials. Next, we carried out the compression and shear tests to investigate the shear characteristics of the specimens, and study the damage pattern and shear strength of the jointed rock mass under different confining pressures and roughness levels. The mesoscopic displacements in the shear process of joints were analyzed by using ABAQUS. The test results show that the effect of the confining pressure on the shear strength of the joint plane is relatively obvious, and a larger confining pressure indicates a larger shear strength. The effects of different joint plane roughness and shear rated on the shear characteristics of the joint plane are also significant. The mesoscopic displacement difference inside the joint plane with higher roughness is relatively large, and the stress concentration phenomenon is obvious and lasts longer, which leads to the faster destruction of the specimen with higher roughness and the higher destruction degree. Therefore, we suggest that the priority should be given to the reinforcement of jointed rock mass with high roughness during the construction to prevent sudden destabilization and failure.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know