An improved approach for automated cervical cell segmentation with PointRend
Scientific Reports, ISSN: 2045-2322, Vol: 14, Issue: 1, Page: 14210
2024
- 1Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Regular screening for cervical cancer is one of the best tools to reduce cancer incidence. Automated cell segmentation in screening is an essential task because it can present better understanding of the characteristics of cervical cells. The main challenge of cell cytoplasm segmentation is that many boundaries in cell clumps are extremely difficult to be identified. This paper proposes a new convolutional neural network based on Mask RCNN and PointRend module, to segment overlapping cervical cells. The PointRend head concatenates fine grained features and coarse features extracted from different feature maps to fine-tune the candidate boundary pixels of cell cytoplasm, which are crucial for precise cell segmentation. The proposed model achieves a 0.97 DSC (Dice Similarity Coefficient), 0.96 TPRp (Pixelwise True Positive Rate), 0.007 FPRp (Pixelwise False Positive Rate) and 0.006 FNRo (Object False Negative Rate) on dataset from ISBI2014. Specially, the proposed method outperforms state-of-the-art result by about 3% on DSC, 1% on TPRp and 1.4% on FNRo respectively. The performance metrics of our model on dataset from ISBI2015 are slight better than the average value of other approaches. Those results indicate that the proposed method could be effective in cytological analysis and then help experts correctly discover cervical cell lesions
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know