Attentive context and semantic enhancement mechanism for printed circuit board defect detection with two-stage and multi-stage object detectors
Scientific Reports, ISSN: 2045-2322, Vol: 14, Issue: 1, Page: 18124
2024
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Printed Circuit Boards (PCBs) are key devices for the modern-day electronic technologies. During the production of these boards, defects may occur. Several methods have been proposed to detect PCB defects. However, detecting significantly smaller and visually unrecognizable defects has been a long-standing challenge. The existing two-stage and multi-stage object detectors that use only one layer of the backbone, such as Resnet’s third layer (C) or fourth layer (C), suffer from low accuracy, and those that use multi-layer feature maps extractors, such as Feature Pyramid Network (FPN), incur higher computational cost. Founded by these challenges, we propose a robust, less computationally intensive, and plug-and-play Attentive Context and Semantic Enhancement Module (ACASEM) for two-stage and multi-stage detectors to enhance PCB defects detection. This module consists of two main parts, namely adaptable feature fusion and attention sub-modules. The proposed model, ACASEM, takes in feature maps from different layers of the backbone and fuses them in a way that enriches the resulting feature maps with more context and semantic information. We test our module with state-of-the-art two-stage object detectors, Faster R-CNN and Double-Head R-CNN, and with multi-stage Cascade R-CNN detector on DeepPCB and Augmented PCB Defect datasets. Empirical results demonstrate improvement in the accuracy of defect detection.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know