Model of the influences of fiber diameter and content on flowability of basalt fiber reinforced phosphorus building gypsum composite slurry
Scientific Reports, ISSN: 2045-2322, Vol: 14, Issue: 1, Page: 23043
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Water film thickness (WFT) is a primary factor influencing the flowability of cement mortar and gypsum slurry. However, conventional WFT calculation models have overlooked the impact of fiber surface properties on flowability. This study addresses this issue by introducing a parameter called the residual moisture distribution coefficient into the residual moisture distribution coefficient (RMDC) and the WFT calculation model. Thirty-six groups of basalt fiber-Phosphogypsum composite slurry with varied mix proportions were designed and assessed for their flowability and packing density. The RMDC and WFT were derived from fitting with the improved model. Finally, a basalt fiber-Phosphogypsum composite slurry flowability prediction model based on WFT was established, laying a foundation for the design and further application of fiber-gypsum composite flowability.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know