CIGB-300 internalizes and impairs viability of NSCLC cells lacking actionable targets by inhibiting casein kinase-2 signaling
Scientific Reports, ISSN: 2045-2322, Vol: 14, Issue: 1, Page: 26038
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Overall response rates in advanced Non-Small Cell Lung Cancer (NSCLC) remains low. Thus, novel molecular targets, tailored drugs and/or drug combinations are needed. Casein Kinase-2 (CK2) is a constitutively active and frequently over-expressed enzyme which fosters tumor survival, proliferation and metastasis. By using a clinical-grade and Cell Penetrating Peptide-based inhibitor coined as CIGB-300, we explore the anti-neoplastic effects caused by interruption of CK2 signaling in lung cancer cells lacking EGFR, ALK and ROS mutations. CIGB-300 penetrated and impaired viability and proliferation of Lung Adenocarcinoma (LUAD) (A549, NCI-H522) and Lung Squamous Carcinoma (LUSC) (NCI-H226 and SK-MES-1) cells in a dose-response manner. The differential activity could not be explained by overall peptide uptake or its subcellular distribution, as evidenced by flow cytometry and confocal microscopy. Upon internalization, CIGB-300 interacted with CK2 catalytic subunits (ɑ1/ɑ2) and CK2 substrates, thus impairing phosphorylation of enzyme substrates (CDC37s13, NPM1s125) and downstream proteins (RPS6s325/326). CK2 inhibition induced an early Reactive Oxygen Species (ROS) and mitochondrial membrane depolarization, which predates lung cancer cell death. Finally, intravenous injection of CIGB-300 in a cell line-based xenograft corroborated CIGB-300’s anti-tumor effects and suggested concurrent in situ reductions of CSNK2ɑ subunit and downstream RPS6s235/236 phosphorylation. Overall, CIGB-300 therapeutic hypothesis and antineoplastic effects demonstrated herein, further support the evaluation of this clinical-grade CK2 inhibitor in advanced NSCLC with limited therapeutic options.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know