Picosecond timescale tracking of pentacene triplet excitons with chemical sensitivity
Communications Physics, ISSN: 2399-3650, Vol: 2, Issue: 1
2019
- 19Citations
- 27Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Energie rinnovabili, la luce di sincrotrone per studiare le celle solari organiche del futuro
Il futuro delle energie rinnovabili e, in particolare, nel campo del fotovoltaico sembra essere orientato verso lo sviluppo di celle solari realizzate con materiali organici, che potrebbero prendere il posto di quelle attualmente in commercio in silicio. Per questo motivo gli scienziati studiano l’efficienza energetica di nuovi materiali organici, andando a caccia di quelli che […] L'articolo Ener
Article Description
Singlet fission is a photophysical process in which an optically excited singlet exciton is converted into two triplet excitons. Singlet fission sensitized solar cells are expected to display a greatly enhanced power conversion efficiency compared to conventional single-junction cells, but the efficient design of such devices relies on the selection of materials capable of harvesting triplets generated in the fission chromophore. To this aim, the possibility of measuring triplet exciton dynamics with chemical selectivity paves the way for the rational design of complex heterojunctions, with optimized triplet conversion. Here we exploit the chemical sensitivity of X-ray absorption spectroscopy to track triplet exciton dynamics at the picosecond timescale in multilayer films of pentacene, the archetypal singlet fission material. We experimentally identify the signature of the triplet exciton in the Carbon K-edge absorption spectrum and measure its lifetime of about 300 ps. Our results are supported by state-of-the-art ab initio calculations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know