Highly charged 180 degree head-to-head domain walls in lead titanate
Communications Physics, ISSN: 2399-3650, Vol: 3, Issue: 1
2020
- 16Citations
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Charged domain walls (DWs) in ferroelectric materials are an area of intense research. Microscale strain has been identified as a method of inducing arrays of twin walls to meet at right angles, forming needlepoint domains which exhibit novel material properties. Atomic scale characterisation of the features exhibiting these exciting behaviours was inaccessible with the piezoresponse force microscopy resolution of previous work. Here we use aberration corrected scanning transmission electron microscopy to observe short, stepped, highly charged DWs at the tip of the needle points in ferroelectric PbTiO. Reverse Ti shift polarisation mapping confirms the head-to-head polarisation in adjacent domains. Strain mapping reveals large deviations from the bulk and a wider DW with a high Pb vacancy concentration. The extra screening charge is found to stabilise the DW perpendicular to the opposing polarisation vectors and thus constitutes the most highly charged DW possible in PbTiO. This feature at the needle point junction is a 5 nm × 2 nm channel running through the sample and is likely to have useful conducting properties. We envisage that similar junctions can be formed in other ferroelastic materials and yield exciting phenomena for future research.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know