Ab-initio calculations of shallow dopant qubits in silicon from pseudopotential and all-electron mixed approach
Communications Physics, ISSN: 2399-3650, Vol: 5, Issue: 1
2022
- 3Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Obtaining an accurate first-principle description of the electronic properties of dopant qubits is critical for engineering and optimizing high-performance quantum computing. However, density functional theory (DFT) has had limited success in providing a full quantitative description of these dopants due to their large wavefunction extent. Here, we build on recent advances in DFT to evaluate phosphorus dopants in silicon on a lattice comprised of 4096 atoms with hybrid functionals on a pseudopotential and all-electron mixed approach. Remarkable agreement is achieved with experimental measurements including: the electron-nuclear hyperfine coupling (115.5 MHz) and its electric field response (−2.65 × 10 μm/V), the binding energy (46.07 meV), excited valley-orbital energies of 1sT (37.22 meV) and 1sE (35.87 meV) states, and super-hyperfine couplings of the proximal shells of the silicon lattice. This quantitative description of spin and orbital properties of phosphorus dopant simultaneously from a single theoretical framework will help as a predictive tool for the design of qubits.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know