Concurrence percolation threshold of large-scale quantum networks
Communications Physics, ISSN: 2399-3650, Vol: 5, Issue: 1
2022
- 13Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Quantum networks describe communication networks that are based on quantum entanglement. A concurrence percolation theory has been recently developed to determine the required entanglement to enable communication between two distant stations in an arbitrary quantum network. Unfortunately, concurrence percolation has been calculated only for very small networks or large networks without loops. Here, we develop a set of mathematical tools for approximating the concurrence percolation threshold for unprecedented large-scale quantum networks by estimating the path-length distribution, under the assumption that all paths between a given pair of nodes have no overlap. We show that our approximate method agrees closely with analytical results from concurrence percolation theory. The numerical results we present include 2D square lattices of 200 nodes and complex networks of up to 10 nodes. The entanglement percolation threshold of a quantum network is a crucial parameter for constructing a real-world communication network based on entanglement, and our method offers a significant speed-up for the intensive computations involved.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know