Above-threshold ionization with X-ray free-electron lasers
Communications Physics, ISSN: 2399-3650, Vol: 7, Issue: 1
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study delves into the relatively uncharted territory of Above Threshold Ionization in atoms, triggered by intense X-ray radiation fields. At these frequencies, the energy of a single photon far exceeds the ionization potential of valence electrons in atoms and molecules. The conditions we examine are similar to those achievable with current or future free-electron laser facilities. Under such high-energy scenarios, the onset of strong field ionization requires a shift away from the traditional quasi-classical approach. Here, we present an analytical model to characterize how the field-free ionization potential, ponderomotive energy, and photon energy govern the transition to this regime, all accounted for by means of the Keldysh and Reiss parameters. We show that both of these parameters are needed to capture the onset of strong-field behavior due to both bound state and continuum state properties. At higher X-ray intensities, we find that ionization rates deviate from the linear intensity scaling expected from lowest order perturbative processes, corresponding to channel closure and higher-order photon absorption processes.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know