The atmospheric connection between the Arctic and Eurasia is underestimated in simulations with prescribed sea ice
Communications Earth and Environment, ISSN: 2662-4435, Vol: 5, Issue: 1
2024
- 1Citations
- 8Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Skeptical Science New Research for Week #35 2024
Climate Science Glossary Term Lookup Enter a term in the search box to find its definition. Settings Use the controls in the far right panel
Article Description
Numerous analyses have demonstrated the impact of Arctic sea ice loss on Eurasia during wintertime. However, dynamical models inconsistently support the observed Arctic-Eurasia connection. The critical physical processes causing discrepancies remain unclear. Here, through numerical simulation, we found that the Arctic-Eurasian connection is underestimated when the model is forced with prescribed sea ice concentrations. The suppressed turbulent heat flux over the Arctic sea ice surface, due to the oversimplified sea ice states, is likely an important physical process leading to model spread. By incorporating the reanalyzed turbulent heat flux into the model, we enhance the heat transfer and reproduce the Arctic-Eurasian connection. The weakened Siberian Storm Track and reduced baroclinicity favors the strengthened Siberian High through eddy feedback forcing. These findings highlight the vital role of turbulent heat flux related to sea ice loss, emphasizing the urgent need for enhanced model fidelity in representing the sea ice processes.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know