Learning properties of ordered and disordered materials from multi-fidelity data
Nature Computational Science, ISSN: 2662-8457, Vol: 1, Issue: 1, Page: 46-53
2021
- 135Citations
- 184Captures
- 5Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations135
- Citation Indexes135
- 135
- CrossRef50
- Captures184
- Readers184
- 184
- Mentions5
- News Mentions4
- 4
- Blog Mentions1
- 1
Most Recent Blog
Nanoengineers develop a predictive database for materials
A breakthrough algorithm expands the exploration space for materials by orders of magnitude.
Most Recent News
UC-San Diego: New Method Makes Better Predictions of Material Properties Using Low Quality Data
(TNSJou) -- The University of California San Diego campus issued the following news: Advancements in energy technologies, healthcare, semiconductors and food production all have one
Article Description
Predicting the properties of a material from the arrangement of its atoms is a fundamental goal in materials science. While machine learning has emerged in recent years as a new paradigm to provide rapid predictions of materials properties, their practical utility is limited by the scarcity of high-fidelity data. Here, we develop multi-fidelity graph networks as a universal approach to achieve accurate predictions of materials properties with small data sizes. As a proof of concept, we show that the inclusion of low-fidelity Perdew–Burke–Ernzerhof band gaps greatly enhances the resolution of latent structural features in materials graphs, leading to a 22–45% decrease in the mean absolute errors of experimental band gap predictions. We further demonstrate that learned elemental embeddings in materials graph networks provide a natural approach to model disorder in materials, addressing a fundamental gap in the computational prediction of materials properties.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know