Rapid assessment of T-cell receptor specificity of the immune repertoire
Nature Computational Science, ISSN: 2662-8457, Vol: 1, Issue: 5, Page: 362-373
2021
- 30Citations
- 86Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations30
- Citation Indexes30
- CrossRef30
- 24
- Captures86
- Readers86
- 86
Article Description
Accurate assessment of T-cell-receptor (TCR)–antigen specificity across the whole immune repertoire lies at the heart of improved cancer immunotherapy, but predictive models capable of high-throughput assessment of TCR–peptide pairs are lacking. Recent advances in deep sequencing and crystallography have enriched the data available for studying TCR–peptide systems. Here, we introduce RACER, a pairwise energy model capable of rapid assessment of TCR–peptide affinity for entire immune repertoires. RACER applies supervised machine learning to efficiently and accurately resolve strong TCR–peptide binding pairs from weak ones. The trained parameters further enable a physical interpretation of interacting patterns encoded in each TCR–peptide system. When applied to simulate thymic selection of a major-histocompatibility-complex (MHC)-restricted T-cell repertoire, RACER accurately estimates recognition rates for tumor-associated neoantigens and foreign peptides, thus demonstrating its utility in helping address the computational challenge of reliably identifying properties of tumor antigen-specific T-cells at the level of an individual patient’s immune repertoire.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know