Variation and constraint in plant evolution and development
Heredity, ISSN: 0018-067X, Vol: 100, Issue: 2, Page: 171-177
2008
- 58Citations
- 242Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations58
- Citation Indexes58
- 58
- CrossRef55
- Captures242
- Readers242
- 242
Article Description
The goal of this short review is to consider the interrelated phenomena of phenotypic variation and genetic constraint with respect to plant diversity. The unique aspects of plants, including sessile habit, modular growth and diverse developmental programs expressed at the phytomer level, merit a specific examination of the genetic basis of their phenotypic variation, and how they experience and escape genetic constraint. Numerous QTL studies with wild and domesticated plants reveal that most phenotypic traits are polygenic but vary in the number and effect of the loci contributing, from a few loci of large effects to many with small effects. Further, somatic mutations, developmental plasticity and epigenetic variation, especially gene methylation, can contribute to increases in phenotypic variation. The flip side of these processes, genetic constraint, can similarly be the result of many factors, including pleiotropy, canalization and genetic redundancy. Genetic constraint is not only a mechanism to prevent change, however, it can also serve to direct evolution along certain paths. Ultimately, genetic constraint often comes full circle and is released through events such as hybridization, genome duplication and epigenetic remodeling. We are just beginning to understand how these processes can operate simultaneously during the evolution of ecologically important traits in plants. © 2008 Nature Publishing Group All rights reserved.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know