Human leukemias with mutated FLT3 kinase are synergistically sensitive to FLT3 and Hsp90 inhibitors: The key role of the STAT5 signal transduction pathway
Leukemia, ISSN: 1476-5551, Vol: 19, Issue: 9, Page: 1605-1612
2005
- 44Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations44
- Citation Indexes44
- 44
- CrossRef35
- Captures24
- Readers24
- 24
Article Description
17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of the molecular chaperone heat shock protein 90, results in cell type-specific inhibition of proliferation of leukemic cells. GTP14564 is a tyrosine kinase inhibitor actively against FLT3. The current study evaluated the single and combined effects of 17-AAG and GTP14564, and the role of FLT3 in their inhibitory effects. The importance of FLT3 mutations was demonstrated using small interfering RNA (siRNA) targeted to FLT3. Similar to FLT3 siRNA, GTP14564 inhibited FLT3 internal tandem duplication (ITD) cells (MV4;11) and FLT3 amplified wild-type cells (SEMK2-M1), but not wild-type FLT3 cells (RS4;11). However, when RS4;11 cells were stimulated with FLT3-ligand, phosphorylation of STAT5 and GTP14564 inhibition were observed. Responses to GTP14564 in all cell types were directly related to the level of STAT5 phosphorylation in the cells. We observed synergistic effects of combined 17-AAG and GTP14564 in cell lines with FLT3-ITD and amplified wild-type FLT3. Combined treatment with 17-AAG and GTP14564 reduced the levels of p-FLT3 and p-STAT5, enhanced G0/G1 arrest and apoptosis in FLT3-ITD and amplified wild-type FLT3. The combination of 17-AAG with FLT3 kinase inhibitors can enhance targeted therapy in leukemias with FLT3 mutations, such as MLL fusion gene leukemias. © 2005 Nature Publishing Group All rights reserved.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know