An in vitro model of human dopaminergic neurons derived from embryonic stem cells: MPP toxicity and GDNF neuroprotection
Neuropsychopharmacology, ISSN: 0893-133X, Vol: 31, Issue: 12, Page: 2708-2715
2006
- 76Citations
- 73Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations76
- Citation Indexes76
- 76
- CrossRef61
- Captures73
- Readers73
- 73
Article Description
Human embryonic stem cells (hESCs) can proliferate indefinitely yet also differentiate in vitro, allowing normal human neurons to be generated in unlimited numbers. Here, we describe the development of an in vitro neurotoxicity assay using human dopaminergic neurons derived from hESCs. We showed that the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP ), which produces features of Parkinson's disease in humans, was toxic for hESC-derived dopaminergic neurons. Treatment with glial cell line-derived neurotrophic factor protected tyrosine hydroxylase-positive neurons against MPP-induced apoptotic cell death and loss of neuronal processes as well as against the formation of intracellular reactive oxygen species. The availability of human dopaminergic neurons, derived from hESCs, therefore allows for the possibility of directly examining the unique features of human dopaminergic neurons with respect to their responses to pharmacological agents as well as environmental and chemical toxins. © 2006 Nature Publishing Group All rights reserved.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know