Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cadherin, leading to loss of β-catenin from cell-cell contacts
Oncogene, ISSN: 0950-9232, Vol: 18, Issue: 50, Page: 7080-7090
1999
- 121Citations
- 67Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations121
- Citation Indexes121
- 121
- CrossRef100
- Captures67
- Readers67
- 67
Article Description
Cadherins are major cell-cell adhesion molecules in both tumor and normal tissues. Although serum levels of soluble E-cadherin have been shown to be higher in the cancer patients than in healthy volunteers, the detail mechanism regulating release of soluble E-cadherin remains to be elucidated. Here we show that the ectodomain of E-cadherin is proteolytically cleaved from some cancer cells by a membrane-bound metalloprotease to yield soluble form, and the residual membrane-tethered cleavage product is subsequently degraded by intracellular proteolytic pathway. Futhermore, we show that extracellular calcium influx, that is induced by mechanical scraping of cells or ionomycin treatment, enhances the metalloprotease-mediated E-cadherin cleavage and the subsequent degradation of the cytoplasmic domain. Immunocytochemical analysis demonstrates that the sequential proteolysis of E-cadherin triggered by the calcium influx results in translocation of β-catenin from the cell-cell contacts to cytoplasm. Our data suggest that calcium influx-induced proteolysis of E-cadherin not only disrupts the cell-cell adhesion but also activates β-catenin-mediated intracellular signaling pathway, potentially leading to alterations in motility and proliferation activity of cells.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know