Pharmacoproteomics in drug development
Pharmacogenomics Journal, ISSN: 1470-269X, Vol: 3, Issue: 2, Page: 69-76
2003
- 45Citations
- 61Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations45
- Citation Indexes45
- 45
- CrossRef37
- Captures61
- Readers61
- 61
Review Description
The field of proteomics is taking on increased significance as the relevance of investigating and understanding protein expression in disease and drug development is appreciated. Recent advances in proteomics have been driven by the availability of numerous annotated whole-genome sequences and a broad range of technological and bioinformatic developments that underscore the complexity of the proteome. This review briefly addresses some of the various technologies that comprise Expression Proteomics and Functional Proteomics, citing examples where these emerging approaches have been applied to pharmacology, toxicology, and the development of drugs.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know