Manipulating frequency-bin entangled states in cold atoms
Scientific Reports, ISSN: 2045-2322, Vol: 4, Issue: 1, Page: 3941
2014
- 9Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Optical manipulation of entanglement harnessing the frequency degree of freedom is important for encoding of quantum information. We here devise a phase-resonant excitation mechanism of an atomic interface where full control of a narrowband single-photon two-mode frequency entangled state can be efficiently achieved. We illustrate the working physical mechanism for an interface made of cold 87 Rb atoms where entanglement is well preserved from degradation over a typical 100â€...μm length scale of the interface and with fractional delays of the order of unity. The scheme provides a basis for efficient multi-frequency and multi-photon entanglement, which is not easily accessible to polarization and spatial encoding.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know