Doubling Throughput of a Real-Time PCR
Scientific Reports, ISSN: 2045-2322, Vol: 5, Issue: 1, Page: 12595
2015
- 15Citations
- 65Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes14
- CrossRef14
- 14
- Patent Family Citations1
- Patent Families1
- Captures65
- Readers65
- 65
Article Description
The invention of polymerase chain reaction (PCR) in 1983 revolutionized many areas of science, due to its ability to multiply a number of copies of DNA sequences (known as amplicons). Here we report on a method to double the throughput of quantitative PCR which could be especially useful for PCR-based mass screening. We concurrently amplified two target genes using only single fluorescent dye. A FAM probe labelled olionucleotide was attached to a quencher for one amplicon while the second one was without a probe. The PCR was performed in the presence of the intercalating dye SYBR Green I. We collected the fluorescence amplitude at two points per PCR cycle, at the denaturation and extension steps. The signal at denaturation is related only to the amplicon with the FAM probe while the amplitude at the extension contained information from both amplicons. We thus detected two genes within the same well using a single fluorescent channel. Any commercial real-time PCR systems can use this method doubling the number of detected genes. The method can be used for absolute quantification of DNA using a known concentration of housekeeping gene at one fluorescent channel.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know