Pro-arrhythmogenic effects of CACNA1C G1911R mutation in human ventricular tachycardia: Insights from cardiac multi-scale models
Scientific Reports, ISSN: 2045-2322, Vol: 6, Issue: 1, Page: 31262
2016
- 19Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes19
- 19
- CrossRef14
- Captures24
- Readers24
- 24
Article Description
Mutations in the CACNA1C gene are associated with ventricular tachycardia (VT). Although the CACNA1C mutations were well identified in patients with cardiac arrhythmias, mechanisms by which cardiac arrhythmias are generated in such genetic mutation conditions remain unclear. In this study, we identified a novel mechanism of VT resulted from enhanced repolarization dispersion which is a key factor for arrhythmias in the CACNA1C G1911R mutation using multi-scale computational models of the human ventricle. The increased calcium influx in the mutation prolonged action potential duration (APD), produced steepened action potential duration restitution (APDR) curves as well as augmented membrane potential differences among different cell types during repolarization, increasing transmural dispersion of repolarization (DOR) and the spatial and temporal heterogeneity of cardiac electrical activities. Consequentially, the vulnerability to unidirectional conduction block in response to a premature stimulus increased at tissue level in the G1911R mutation. The increased functional repolarization dispersion anchored reentrant excitation waves in tissue and organ models, facilitating the initiation and maintenance of VT due to less meandering rotor tip. Thus, the increased repolarization dispersion caused by the G1911R mutation is a primary factor that may primarily contribute to the genesis of cardiac arrhythmias in Timothy Syndrome.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know