PlumX Metrics
Embed PlumX Metrics

Comparative Analysis of piggyBac, CRISPR/Cas9 and TALEN Mediated BAC Transgenesis in the Zygote for the Generation of Humanized SIRPA Rats

Scientific Reports, ISSN: 2045-2322, Vol: 6, Issue: 1, Page: 31455
2016
  • 78
    Citations
  • 0
    Usage
  • 62
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    78
  • Captures
    62
  • Mentions
    1
    • News Mentions
      1
      • 1

Most Recent News

Can "Gene Writing" Deliver What Gene Editing Can't?

A biotech startup called Tessera Therapeutics has made a splash with its claims about the trademarked technology. Is the excitement justified?

Article Description

BAC transgenic mammalian systems offer an important platform for recapitulating human gene expression and disease modeling. While the larger body mass, and greater genetic and physiologic similarity to humans render rats well suited for reproducing human immune diseases and evaluating therapeutic strategies, difficulties of generating BAC transgenic rats have hindered progress. Thus, an efficient method for BAC transgenesis in rats would be valuable. Immunodeficient mice carrying a human SIRPA transgene have previously been shown to support improved human cell hematopoiesis. Here, we have generated for the first time, human SIRPA BAC transgenic rats, for which the gene is faithfully expressed, functionally active, and germline transmissible. To do this, human SIRPA BAC was modified with elements to work in coordination with genome engineering technologies-piggyBac, CRISPR/Cas9 or TALEN. Our findings show that piggyBac transposition is a more efficient approach than the classical BAC transgenesis, resulting in complete BAC integration with predictable end sequences, thereby permitting precise assessment of the integration site. Neither CRISPR/Cas9 nor TALEN increased BAC transgenesis. Therefore, an efficient generation of human SIRPA transgenic rats using piggyBac opens opportunities for expansion of humanized transgenic rat models in the future to advance biomedical research and therapeutic applications.

Bibliographic Details

Jung, Chris J; Ménoret, Séverine; Brusselle, Lucas; Tesson, Laurent; Usal, Claire; Chenouard, Vanessa; Remy, Séverine; Ouisse, Laure-Hélène; Poirier, Nicolas; Vanhove, Bernard; de Jong, Pieter J; Anegon, Ignacio

Springer Science and Business Media LLC

Multidisciplinary

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know