Non-equilibrium plasma prevention of Schistosoma japonicum transmission
Scientific Reports, ISSN: 2045-2322, Vol: 6, Issue: 1, Page: 35353
2016
- 18Citations
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations18
- Citation Indexes18
- 18
- CrossRef16
- Captures31
- Readers31
- 31
Article Description
Schistosoma japonicum is a widespread human and animal parasite that causes intestinal and hepatosplenic schistosomiasis linked to colon, liver and bladder cancers, and anemia. Estimated 230 million people are currently infected with Schistosoma spp, with 779 million people at risk of contracting the parasite. Infection occurs when a host comes into contact with cercariae, a planktonic larval stage of the parasite, and can be prevented by inactivating the larvae, commonly by chemical treatment. We investigated the use of physical non-equilibrium plasma generated at atmospheric pressure using custom-made dielectric barrier discharge reactor to kill S. japonicum cercariae. Survival rate decreased with treatment time and applied power. Plasmas generated in O and air gas discharges were more effective in killing S. japonicum cercariae than that generated in He, which is directly related to the mechanism by which cercariae are inactivated. Reactive oxygen species, such as O atoms, abundant in O plasma and NO in air plasma play a major role in killing of S. japonicum cercariae via oxidation mechanisms. Similar level of efficacy is also shown for a gliding arc discharge plasma jet generated in ambient air, a system that may be more appropriate for scale-up and integration into existing water treatment processes.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know