Genetic risk prediction and neurobiological understanding of alcoholism
Translational Psychiatry, ISSN: 2158-3188, Vol: 4, Issue: 5, Page: e391
2014
- 55Citations
- 178Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations55
- Citation Indexes55
- 55
- CrossRef49
- Captures178
- Readers178
- 178
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- News1
Most Recent Blog
The Genetics of Alcohol Use Disorder
Past research on Alcohol use disorder (AUD), the medical term for alcoholism has linked the addiction to hereditary and environmental factors. Having parents who abuse alcohol or being exposed to social factors do increase one's chances to struggle with the addiction, but ultimately the determining factor for the vulnerability to the addiction is genetic predisposition. A study investigates the ge
Most Recent News
I Drink to Demolish Myself
T he first time I got drunk — really drunk — I was 14. It was summer, and I was on my own; my mother was a nurse and
Article Description
We have used a translational Convergent Functional Genomics (CFG) approach to discover genes involved in alcoholism, by gene-level integration of genome-wide association study (GWAS) data from a German alcohol dependence cohort with other genetic and gene expression data, from human and animal model studies, similar to our previous work in bipolar disorder and schizophrenia. A panel of all the nominally significant P-value SNPs in the top candidate genes discovered by CFG(n=135 genes, 713 SNPs) was used to generate a geneticrisk prediction score (GRPS), which showed a trend towards significance (P=0.053) in separatingalcohol dependent individuals from controls in an independent German test cohort. We then validated and prioritized our top findings from this discovery work, and subsequently tested them in three independent cohorts, from two continents. A panel of all the nominally significant P-value single-nucleotide length polymorphisms (SNPs) in the top candidate genes discovered by CFG (n=135 genes, 713 SNPs) were used to generate a Genetic Risk Prediction Score (GRPS), which showed a trend towards significance (P=0.053) in separating alcohol-dependent individuals from controls in an independent German test cohort. In order to validate and prioritize the key genes that drive behavior without some of the pleiotropic environmental confounds present in humans, we used a stress-reactive animal model of alcoholism developed by our group, the D-box binding protein (DBP) knockout mouse, consistent with the surfeit of stress theory of addiction proposed by Koob and colleagues. A much smaller panel (n=11 genes, 66 SNPs) of the top CFG-discovered genes for alcoholism, cross-validated and prioritized by this stress-reactive animal model showed better predictive ability in the independent German test cohort (P=0.041). The top CFG scoring gene for alcoholism from the initial discovery step, synuclein alpha (SNCA) remained the top gene after the stress-reactive animal model cross-validation. We also tested this small panel of genes in two other independent test cohorts from the United States, one with alcohol dependence (P=0.00012) and one with alcohol abuse (a less severe form of alcoholism; P=0.0094). SNCA by itself was able to separate alcoholics from controls in the alcohol-dependent cohort (P=0.000013) and the alcohol abuse cohort (P=0.023). So did eight other genes from the panel of 11 genes taken individually, albeit to a lesser extent and/or less broadly across cohorts. SNCA, GRM3 and MBP survived strict Bonferroni correction for multiple comparisons. Taken together, these results suggest that our stress-reactive DBP animal model helped to validate and prioritize from the CFG-discovered genes some of the key behaviorally relevant genes for alcoholism. These genes fall into a series of biological pathways involved in signal transduction, transmission of nerve impulse (including myelination) and cocaine addiction. Overall, our work provides leads towards a better understanding of illness, diagnostics and therapeutics, including treatment with omega-3 fatty acids. We also examined the overlap between the top candidate genes for alcoholism from this work and the top candidate genes for bipolar disorder, schizophrenia, anxiety from previous CFG analyses conducted by us, as well as cross-tested genetic risk predictions. This revealed the significant genetic overlap with other major psychiatric disorder domains, providing a basis for comorbidity and dual diagnosis, and placing alcohol use in the broader context of modulating the mental landscape. © 2014 Macmillan Publishers Limited.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know